
www.manaraa.com

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

1. Basic Programming
Concepts

1.1–1.2

1. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.A.Basics.Why

A human being should be able to
change a diaper,

plan an invasion,
butcher a hog,

conn a ship,
design a building,

write a sonnet,
balance accounts,

build a wall,
set a bone,

comfort the dying,
take orders,

give orders,
cooperate,

act alone,
solve equations,

analyze a new problem,
pitch manure,

program a computer,
cook a tasty meal,

fight efficiently, and
die gallantly.

Specialization is for insects.
 Robert A. Heinlein
 Time Enough for Love (1973)

You need to know how to program
in order to be able to tell a computer what you want it to do.

Naive ideal: Natural language instructions.

Prepackaged solutions (apps) are great when what they do is what you want.

Programming enables you to make a computer do anything you want.

4

well, almost anything (stay tuned)

“Please simulate the motion of N heavenly bodies,
subject to Newton’s laws of motion and gravity.”

Ada Lovelace
Analytical

Engine

first computerfirst programmer

www.manaraa.com

Programming: telling a computer what to do

Programming

• Is not just for experts.

• Is a natural, satisfying and creative experience.

• Enables accomplishments not otherwise possible.

• The path to a new world of intellectual endeavor.

5

“ Instead of imagining that our main task is to instruct a  
 computer what to do, let us concentrate rather on explaining  
 to human beings what we want a computer to do. ”

− Don Knuth

Challenges

• Need to learn what computers can do.

• Need to learn a programming language. Telling a computer what to do

Telling a computer what to do

6

Kids Make Nutritious Snacks.

Red Tape Holds Up New Bridge.

Police Squad Helps Dog Bite Victim.

Local High School Dropouts Cut in Half.

Actual newspaper headlines

—Rich Pattis

Natural language

• Easy for human.

• Error-prone for computer.

Machine language

• Easy for computer.

• Error-prone for human.

High-level language

• Some difficulty for both.

• An acceptable tradeoff.

But which high-level language?

Naive ideal: A single programming language for all purposes.

for (int t = 0; t < 2000; t++)
{
 a[0] = a[11] ^ a[9];
 System.out.print(a[0]);
 for (int i = 11; i > 0; i--)
 a[i] = a[i-1];
}

Simulating an LFSR (see Prologue lecture)

10: 8A00 RA ← mem[00]

11: 8B01 RB ← mem[01]

12: 1CAB RC ← RA + RB

13: 9C02 mem[02] ← RC
14: 0000 halt

Adding two numbers (see TOY lecture)

7

Our Choice: Java

Java features

• Widely used.

• Widely available.

• Continuously under development since early 1990s.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.
James Gosling

Java economy

• Mars rover.

• Cell phones.

• Blu-ray Disc.

• Web servers.

• Medical devices.

• Supercomputing.

•…

millions of developers
billions of devices

8

Our Choice: Java

Java features

• Widely used.

• Widely available.

• Continuously under development since early 1990s.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.

Facts of life

• No language is perfect.

• You need to start with some language.

Our approach

• Use a minimal subset of Java.

• Develop general programming skills that are applicable to many languages.

It’s not about the language!

“ There are only two kinds of
programming languages: those
people always [gripe] about and
those nobody uses.”

− Bjarne Stroustrup

www.manaraa.com

A rich subset of the Java language vocabulary

9

built-in 
types

int

long

double

char

String

boolean

flow control

if

else

for

while
boolean

operations

true

false

!

&&

||

String
operations

+

""

length()

charAt()

compareTo()

matches()

operations on 
numeric types

+

-

*

/

%

++

--

punctuation

{

}

(

)

,

;

punctuation

int

long

double

char

String

boolean

assignment

=

arrays

a[]

length

new

object 
oriented

static

class

public

private

new

final

toString()

main()

Math
methods

Math.sin()

Math.cos()

Math.log()

Math.exp()

Math.pow()

Math.sqrt()

Math.min()

Math.max()

Math.abs()

Math.PI

Math
methods

Math.sin()

Math.cos()

Math.log()

Math.exp()

Math.pow()

Math.sqrt()

Math.min()

Math.max()

Math.abs()

Math.PI

System
methods

System.print()

System.println()

System.printf()

type conversion methods

Integer.parseInt()

Double.parseDouble()

Your programs will primarily consist of these plus identifiers (names) that you make up.

comparisons

<

<=

>

>=

==

!=

our Std methods

StdIn.read*()

StdOut.print*()

StdDraw.*()

StdAudio.*()

StdRandom.*()

Anatomy of your first program

10

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World");
 }
}

text file named

HelloWorld.java

program name

main() method

body of main()
(a single statement)

Anatomy of your next several programs

11

public class MyProgram
{
 public static void main(String[] args)
 {
 ...

 }
}

main() method
text file named

MyProgram.java

program name

body of main()
(a sequence of statements)

Pop quiz on "your first program"

Q. Use common sense to cope with the following error messages.

12

% javac MyProgram.java
% java MyProgram
Main method not public.

% javac MyProgram.java
MyProgram.java:3: invalid method declaration; return type required
 public static main(String[] args)
 ^

www.manaraa.com

Pop quiz on "your first program"

Q. Use common sense to cope with the following error messages.

13

% javac MyProgram.java
% java MyProgram
Main method not public.

% javac MyProgram.java
MyProgram.java:3: invalid method declaration; return type required
 public static main(String[] args)
 ^

A. Must have forgotten “public”. public static void main(String[] args)

A. Check HelloWorld. Aha! Forgot “void”. public static void main(String[] args)

Three versions of the same program.

14

/***
 * Compilation: javac HelloWorld.java
 * Execution: java HelloWorld
 *
 * Prints "Hello, World". By tradition, this is everyone's first program.
 *
 * % java HelloWorld
 * Hello, World
 *
 ***/

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello, World");
 }
}

public class HelloWorld { public static void main(String[] args) { System.out.println("Hello, World"); } }

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World");
 }
}

Lesson: Fonts, color, comments, and extra space are not relevant in Java
language.

6 Elements of Programming

% javac HelloWorld.java
% java HelloWorld
Hello, World

PROGRAM 1.1.1 IS AN EXAMPLE OF a complete Java program. Its name is HelloWorld,
which means that its code resides in a file named HelloWorld.java (by convention
in Java). The program’s sole action is to print a message back to the terminal win-
dow. For continuity, we will use some standard Java terms to describe the program,
but we will not define them until later in the book: PROGRAM 1.1.1 consists of a single
class named HelloWorld that has a single method named main(). This method uses
two other methods named System.out.print() and System.out.println() to
do the job. (When referring to a method in the text, we use () after the name to
distinguish it from other kinds of names.) Until SECTION 2.1, where we learn about
classes that define multiple methods, all of our classes will have this same structure.
For the time being, you can think of “class” as meaning “program.”

The first line of a method specifies its name and other information; the rest is
a sequence of statements enclosed in braces and each followed by a semicolon. For
the time being, you can think of “programming” as meaning “specifying a class

Program 1.1.1 Hello, World

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first
program. The box below shows what happens when you compile and execute the program. The
terminal application gives a command prompt (% in this book) and executes the commands
that you type (javac and then java in the example below). The result in this case is that the
program prints a message in the terminal window (the third line).

Note on program style
Different styles are appropriate in different contexts.

• Integrated development environment

• Booksite

• Book

• Your code

Enforcing consistent style can

• Stifle creativity.

• Confuse style with language.

Emphasizing consistent style can

• Make it easier to spot errors.

• Make it easier for others to read and use code.

• Enable development environment to provide visual cues.

Bottom line for you: Listen to the person assigning your grade.

15or your boss!

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.A.Basics.Why

Image sources

 http://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

 http://commons.wikimedia.org/wiki/File:Ada_Lovelace.jpg

 http://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg

 http://commons.wikimedia.org/wiki/File:James_Gosling_2005.jpg

 http://commons.wikimedia.org/wiki/File:Bjarne-stroustrup.jpg

 http://blog-images.muddymatches.co.uk.s3.amazonaws.com/dating-advice/wp-content/uploads/2013/01/Bad-guy.jpg

www.manaraa.com

1. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.B.Basics.Develop 18

Program development in Java
is a three-step process, with feedback

1. EDIT your program

• Create it by typing on your computer's keyboard.

• Result: a text file such as HelloWorld.java.

2. COMPILE it to create an executable file

• Use the Java compiler

• Result: a Java bytecode file such as HelloWorld.class

• Mistake? Go back to 1. to fix and recompile.

3. RUN your program

• Use the Java runtime.

• Result: your program’s output.

• Mistake? Go back to 1. to fix, recompile, and run.

a legal Java program that does the wrong thing

not a legal Java program

EDIT

COMPILE RUN

Software for program development

19

Any creative process involves cyclic refinement/development.

A significant difference with programs: We can use our computers to facilitate the process.

Program development environment: Software for editing, compiling and running programs.

Integrated development environment

• Often language- or system-specific.

• Can be helpful to beginners.

Bottom line: Variety of useful tools.

Virtual terminals

• Same for many languages and systems.

• Effective even for beginners.

Bottom line: Extremely simple and concise.

Two time-tested options: (Stay tuned for details).

COMPOSE

PLAYREHEARSE

EDIT

COMPILE RUN

Program development environments: a very short history

Historical context is important in computer science.

• We regularly use old software.

• We regularly emulate old hardware.

• We depend upon old concepts and designs.

20

Widely-used methods for program development

• switches and lights

• punched cards/compiler/runtime

• editor/compiler/runtime/terminal

• editor/compiler/runtime/virtual terminal

• integrated development environment

1960

1970

1980

1990

2000

www.manaraa.com

Program development with switches and lights

Circa 1970: Use switches to input binary program code and data, lights to read output.

21

Stay tuned for details [lectures on the "TOY machine"].

PDP-8, circa 1970

switches

lights

Program development with punched cards and line printers

Mid 1970s: Use punched cards to input program code and data, line printer for output.

22

IBM System 360, circa 1975

Ask your parents about the "computer center" for details.

Timesharing allowed many users to share the same computer.

Program development with timesharing terminals

Late 1970s: Use terminal for editing program, reading output, and controlling computer.

23

VT-100 terminal

VAX 11/780 circa 1977

Program development with personal computers (one approach)

1980s to present day: Use multiple virtual terminals to interact with computer.

• Edit your program using any text editor in a virtual terminal.

• Compile it by typing javac HelloWorld.java in another virtual terminal.

• Run it by typing java HelloWorld

24

virtual terminal for editor

virtual TV set

virtual terminal to compile,
run and examine output

invoke Java compiler at command line

invoke Java runtime at command line

www.manaraa.com

Program development with personal computers (another approach)

25

pseudo-command line

1980s to present day: Use a customized application for program development tasks.

• Edit your program using the built-in text editor.

• Compile it by clicking the “compile” button.

• Run it by clicking the “run” button or using the pseudo-command line.

“compile” button

“run” button

“Integrated Development
Environment” (IDE)

http://drjava.org

Software for program development: tradeoffs

26

Pros

• Easy-to-use language-specific tools.

• System-independent (in principle).

• Used by professionals.

• Can be helpful to beginners.

Pros

• Approach works with any language.

• Useful beyond programming.

• Used by professionals.

• Has withstood the test of time.

Cons

• Overkill for short programs?

• Big application to learn and maintain.

• Often language- or system-specific.

Cons

• Good enough for long programs?

• Dealing with independent applications.

• Working at too low a level?

This course: Used in lectures/book.

IDE

Recommended for assignments.

Virtual terminals

Lessons from short history

27

Every computer has a program development environment that allows us to

• EDIT programs.

• COMPILE them to create an executable file.

• RUN them and examine the output.

Two approaches that have served for decades and are still
effective:

• multiple virtual terminals.

Xerox Alto 1978

Apple Macintosh 1984
IBM PC 1990s

Macbook Air 2014

Wintel ultrabooks 2010s

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.B.Basics.Develop

Image sources

 http://commons.wikimedia.org/wiki/Category:2013_Boston_Red_Sox_season#mediaviewer/  
 File:Koji_Uehara_2_on_June_15,_2013.jpg

 http://thenationalforum.org/wp-content/uploads/2011/03/Legendary-Musicians.png

 http://pixabay.com/p-15812/?no_redirect

www.manaraa.com

1. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.C.Basics.Types

Built-in data types

A data type is a set of values and a set of operations on those values.

30

type set of values examples of values examples of operations

char characters
'A'
'@'

compare

String sequences of characters
"Hello World"
"CS is fun"

concatenate

int integers
17

12345
add, subtract, multiply, divide

double floating-point numbers
3.1415
6.022e23

add, subtract, multiply, divide

boolean truth values
true
false

and, or, not

Java's built-in data types

31

Pop quiz on data types

Q. What is a data type?

32

Pop quiz on data types

Q. What is a data type?

A. A set of values and a set of operations on those values.

www.manaraa.com

int a;
int b;
a = 1234;
b = 99;
int c = a + b;

33

Basic Definitions

combined declaration
and assignment statement

A variable is a name that refers to a value.

A literal is a programming-language representation of a value.

A declaration statement associates a variable with a type.

An assignment statement associates a value with a variable.

variables

literals

assignment statements

declaration statements

Variables, literals, declarations, and assignments example: exchange values

34

public class Exchange

{

 public static void main(String[] args)

 {

 int a = 1234;

 int b = 99;

 int t = a;

 a = b;

 b = t;

 }

}

a b t

undeclared undeclared undeclared

int a = 1234; 1234 undeclared undeclared

int b = 99; 1234 99 undeclared

int t = a; 1234 99 1234

a = b; 99 99 1234

b = t; 99 1234 1234

This code exchanges

the values of a and b.

A trace is a table of variable values after each statement.

Q. What does this program do?

A. No way for us to confirm that it does the exchange! (Need output, stay tuned).

35

Data type for computing with strings: String

values sequences of characters

typical literals "Hello, " "1 " " * "

operation concatenate

operator +

String data type

expression value

"Hi, " + "Bob" "Hi, Bob"

"1" + " 2 " + "1" "1 2 1"

"1234" + " + " + "99" "1234 + 99"

"1234" + "99" "123499"

white
space

space
characters

Typical use: Input and output.

Examples of String operations (concatenation)

Important note:

Character interpretation depends on context!

character

"1234" + " + " + "99"Ex 1: plus signs

operator operator

"1234" + " + " + "99"Ex 2: spaces

white
space

Example of computing with strings: subdivisions of a ruler

36

public class Ruler
{
 public static void main(String[] args)
 {
 String ruler1 = "1";
 String ruler2 = ruler1 + " 2 " + ruler1;
 String ruler3 = ruler2 + " 3 " + ruler2;
 String ruler4 = ruler3 + " 4 " + ruler3;
 System.out.println(ruler4);
 }
}

ruler1 ruler2 ruler3 ruler4

undeclared undeclared undeclared undeclared

 ruler1 = "1"; 1 undeclared undeclared undeclared

 ruler2 = ruler1 + " 2 " + ruler1; 1 1 2 1 undeclared undeclared

 ruler3 = ruler2 + " 3 " + ruler2; 1 1 2 1 1 2 1 3 1 2 1 undeclared

 ruler4 = ruler3 + " 4 " + ruler3; 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

all + ops are concatenation

% java Ruler
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

www.manaraa.com

Input and output
is necessary for us to provide data to our programs and to learn the result of computations.

37

Humans prefer to work with strings.

Programs work more efficiently with numbers.

Command-line input

• Strings you type after the program name are available as args[0], args[1], ... at run time.

• Q. How do we give an integer as command-line input?

• A. Need to call system method Integer.parseInt() to convert the strings to integers.

Stay tuned for many more options for input and output, and more details on type conversion.

command-line
arguments

Output

• System.out.println() method prints the given string.

• Java automatically converts numbers to strings for output.

standard output

Bird's eye view of a Java program

Input and output warmup: exchange values

38

public class Exchange
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int t = a;
 a = b;
 b = t;
 System.out.println(a);
 System.out.println(b);
 }
}

Q. What does this program do?

A. Reads two integers from the command line, then prints them out in the opposite order.

% java Exchange 5 2
2
5

% java Exchange 1234 99
99
1234

Java automatically converts int values to String for output

39

Data type for computing with integers: int

values integers between �231 and 231�1

typical literals 1234 99 0 1000000

operations add subtract multiply divide remainder

operator + � * / %

int data type

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 3 1 drop fractional part

5 % 3 2 remainder

1 / 0 runtime error

Typical usage: Math calculations; specifying programs (stay tuned).

Examples of int operations

expression value comment

3 * 5 - 2 13 * has precedence

3 + 5 / 2 5 / has precedence

3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style

Precedence

Important note:

Only 232 different int values.

not quite the same as integers

Example of computing with integers and strings, with type conversion

40

public class IntOps
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int sum = a + b;
 int prod = a * b;
 int quot = a / b;
 int rem = a % b;
 System.out.println(a + " + " + b + " = " + sum);
 System.out.println(a + " * " + b + " = " + prod);
 System.out.println(a + " / " + b + " = " + quot);
 System.out.println(a + " % " + b + " = " + rem);
 }
}

% java IntOps 5 2
5 + 2 = 7
5 * 2 = 10
5 / 2 = 2
5 % 2 = 1

% java IntOps 1234 99
1234 + 99 = 1333
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46

Note: 1234 = 12*99 + 46

Java automatically converts int values to String for concatenation

www.manaraa.com

Examples:

no double value for π.

no double value for

no double value for 1/3.

41

Data type for computing with floating point numbers: double

values real numbers

typical literals 3.14159 2.0 1.4142135623730951 6.022e23

operations add subtract multiply divide remainder

operator + � * / %

double data type

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23/2 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

Math.sqrt(2.0) 1.4142135623730951

Typical use: Scientific calculations.

Examples of double operations

expression value

1.0 / 0.0 Infinity

Math.sqrt(-1.0) NaN

Special values

Typical double values are approximations

"not a number"

�.���× ����

√
�

Other built-in numeric types

42

values integers between �215 and 215�1

operations [same as int]

short data type

values integers between �263 and 263�1

operations [same as int]

long data type

values real numbers

operations [same as double]

float data type

Why different numeric types?

• Tradeoff between memory use and range for integers.

• Tradeoff between memory use and precision for real numbers.

short
int, float
long, double

43

Excerpts from Java’s Math Library

public class Math

 double abs(double a) absolute value of a

 double max(double a, double b) maximum of a and b

 double min(double a, double b) minimum of a and b

 double sin(double theta) sine function

 double cos(double theta) cosine function

 double tan(double theta) tangent function

 double exp(double a) exponential (ea)

 double log(double a) natural log (loge a, or ln a)

 double pow(double a, double b) raise a to the bth power (ab)

 long round(double a) round to the nearest integer

 double random() random number in [0. 1)

 double sqrt(double a) square root of a

 double E value of e (constant)

 double PI value of π (constant)

also defined for
int, long, and float

inverse functions also available:
asin(), acos(), and atan()

Degrees in radians. Use toDegrees() and toRadians()) to convert.

You can discard your
calculator now (please).

Example of computing with floating point numbers: quadratic equation

44

public class Quadratic
{
 public static void main(String[] args)
 {

 // Parse coefficients from command-line.
 double b = Double.parseDouble(args[0]);
 double c = Double.parseDouble(args[1]);

 // Calculate roots of x*x + b*x + c.
 double discriminant = b*b - 4.0*c;
 double d = Math.sqrt(discriminant);
 double root1 = (-b + d) / 2.0;
 double root2 = (-b - d) / 2.0;

 // Print them out.
 System.out.println(root1);
 System.out.println(root2);
 }
}

% java Quadratic –3.0 2.0
2.0
1.0

% java Quadratic –1.0 –1.0
1.618033988749895
-0.6180339887498949

% java Quadratic 1.0 1.0
NaN
NaN

% java Quadratic 1.0 hello
java.lang.NumberFormatException: hello

% java Quadratic 1.0
java.lang.ArrayIndexOutOfBoundsException

From algebra: the roots of are_� + I_ + J �I ±
�
I� � �J
�

� � � + �

_� � _ � �

_� + _ + �

Need two arguments.

(Fact of life: Not all error messages are crystal clear.)

www.manaraa.com

45

Data type for computing with true and false: boolean

values true false

literals true false

operations and or not

operator && || !

boolean data type

Typical usage: Control logic and flow of a program (stay tuned).

Truth-table definitions

Proof

a !a a b a && b a || b

true false false false false false

false true false true false true

true false false true

true true true true

Q. a XOR b?

A. (!a && b) || (a && !b)

a b !a && b a && !b (!a && b) || (a && !b)

false false false false false

false true true false true

true false false true true

true true false false false

Recall first lecture

46

Comparison operators

Fundamental operations that are defined for each primitive type allow us to compare values.

• Operands: two expressions of the same type.

• Result: a value of type boolean.

operator meaning true false

== equal 2 == 2 2 == 3

!= not equal 3 != 2 2 != 2

< less than 2 < 13 2 < 2

<= less than or equal 2 <= 2 3 <= 2

> greater than 13 > 2 2 < 13

>= greater than or equal 3 >= 2 2 >= 3

non-negative discriminant? (b*b - 4.0*a*c) >= 0.0

beginning of a century? (year % 100) == 0

legal month? (month >= 1) && (month <= 12)

Examples
Typical double values are

approximations so beware

of == comparisons

Example of computing with booleans: leap year test

47

public class LeapYear
{
 public static void main(String[] args)
 {
 int year = Integer.parseInt(args[0]);
 boolean isLeapYear; 

 // divisible by 4 but not 100
 isLeapYear = (year % 4 == 0) && (year % 100 != 0);

 // or divisible by 400
 isLeapYear = isLeapYear || (year % 400 == 0);

 System.out.println(isLeapYear);
 }
}

% java LeapYear 2016
true

% java LeapYear 1993
false

% java LeapYear 1900
false

% java LeapYear 2000
true

Q. Is a given year a leap year?

A. Yes if either (i) divisible by 400 or (ii) divisible by 4 but not 100.

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.C.Basics.Types

Image sources

 http://commons.wikimedia.org/wiki/File:Calculator_casio.jpg

www.manaraa.com

1. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.1.D.Basics.Conversion 50

Type checking

Types of variables involved in data-type operations always must match the definitions.

When appropriate, we often convert a value from one type to another to make types match.

The Java compiler is your friend : it checks for type errors in your code.

public class BadCode
{
 public static void main(String[] args)
 {
 String s = "123" * 2;
 }
}

% javac BadCode.java
BadCode.java:5: operator * cannot be applied to java.lang.String,int
 String s = "123" * 2;
 ^
1 error

51

Type conversion with built-in types

Type conversion is an essential aspect of programming.

Type conversion can give counterintuitive results

but gets easier to understand with practice
Pay attention to the type of your data.

Automatic

• Convert number to string for "+".

• Make numeric types match if no loss of precision.

Explicitly defined for function call.

Cast for values that belong to multiple types.

• Ex: small integers can be short, int or long.

• Ex: double values can be truncated to int values.

expression type value

"x: " + 99 String "x: 99"

11 * 0.25 double 2.75

Integer.parseInt("123") int 123

Math.round(2.71828) long 3

(int) 2.71828 int 2

(int) Math.round(2.71828) int 3

11 * (int) 0.25 int 0

52

Pop quiz on type conversion

Q. Give the type and value of each of the following expressions.

a. (7 / 2) * 2.0

b. (7 / 2.0) * 2

c. "2" + 2

d. 2.0 + "2"

www.manaraa.com

53

Pop quiz on type conversion

Q. Give the type and value of each of the following expressions.

a. (7 / 2) * 2.0

b. (7 / 2.0) * 2

c. "2" + 2

d. 2.0 + "2"

6.0, a double (7/2 is 3, an int)

7.0, a double

22, a String

2.02, a String

An instructive story about type conversion

Why different numeric types?

• Tradeoff between memory use and range for integers.

• Tradeoff between memory use and precision for floating-point.

54

short
int, float
long, double

What to do with an impossible conversion?

• Approach 1: Avoid doing it in the first place.

• Approach 2 (Java): Live with a well-defined result.

• Approach 3: Crash.

A conversion may be impossible.

• Example: (short) 70000.

• Short values must be between �215 and 215 � 1= 32767 .

First launch of Ariane 5, 1996

Example of type conversion put to good use: pseudo-random integers

55

public class RandomInt

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 double r = Math.random();

 int t = (int) (r * N);  

 System.out.println(t);

 }

}

% java RandomInt 6
3

% java RandomInt 6
0

% java RandomInt 10000
3184

System method Math.random() returns a pseudo-random double value in [0, 1).

String to int (system method)

double to int (cast) int to double (automatic)

Problem: Given N, generate a pseudo-random integer between 0 and N � 1.

Summary

A data type is a set of values and a set of operations on those values.

56

Commonly-used built-in data types in Java

• String, for computing with sequence of characters, for input and output.

• int, for computing with integers, for math calculations in programs.

• double, for computing with floating point numbers, typically for science and math apps.

• boolean, for computing with true and false, for decision making in programs.

In Java you must:

• Declare the types of your variables.

• Convert from one type to another when necessary.

• Identify and resolve type errors in order to compile your code.

Pay attention to the type of your data.

The Java compiler is your friend : it will help you identify and fix type errors in your code.

www.manaraa.com

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

1. Basic Programming
Concepts

1.1–1.2

